Distributing Antidote Using PageRank Vectors

نویسندگان

  • Fan Chung Graham
  • Paul Horn
  • Alexander Tsiatas
چکیده

We give an analysis of a variant of the contact process on finite graphs, allowing for non-uniform cure rates, modeling antidote distribution. We examine an inoculation scheme using PageRank vectors which quantify the correlations among vertices in the contact graph. We show that for a contact graph on n nodes we can select a set H of nodes to inoculate such that with probability at least 1−2 , any infection from any starting infected set of s nodes will die out in c log s+ c′ time, where c and c′ depend only on the probabilitstic error bound and the infection rate, and the size of H depends only on s, and the topology around the initially infected nodes, independent of the size of the whole graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Application of Personalized PageRank Vectors: Personalized Search Engine

We introduce a tool which is an application of personalized pagerank vectors such as personalized search engines. We use pre-computed pagerank vectors to rank the search results in favor of user preferences. We describe the design and architecture of our tool. By using pre-computed personalized pagerank vectors we generate search results biased to user preferences such as top-level domain and r...

متن کامل

Multi-commodity Allocation for Dynamic Demands Using PageRank Vectors

We consider a variant of the contact process concerning multi-commodity allocation on networks. In this process, the demands for several types of commodities are initially given at some specified vertices and then the demands spread interactively on a contact graph. To allocate supplies in such a dynamic setting, we use a modified version of PageRank vectors, called Kronecker PageRank, to ident...

متن کامل

Topic-Sensitive PageRank: A Context-Sensitive Ranking Algorithm for Web Search

The original PageRank algorithm for improving the ranking of search-query results computes a single vector, using the link structure of the Web, to capture the relative “importance” of Web pages, independent of any particular search query. To yield more accurate search results, we propose computing a set of PageRank vectors, biased using a set of representative topics, to capture more accuratel...

متن کامل

A Sharp PageRank Algorithm with Applications to Edge Ranking and Graph Sparsification

We give an improved algorithm for computing personalized PageRank vectors with tight error bounds which can be as small as O(n−k) for any fixed positive integer k. The improved PageRank algorithm is crucial for computing a quantitative ranking for edges in a given graph. We will use the edge ranking to examine two interrelated problems — graph sparsification and graph partitioning. We can combi...

متن کامل

Using Hyperlink Features to Personalize Web Search

Personalized search has gained great popularity to improve search effectiveness in recent years. The objective of personalized search is to provide users with information tailored to their individual contexts. We propose to personalize Web search based on features extracted from hyperlinks, such as anchor terms or URL tokens. Our methodology personalizes PageRank vectors by weighting links base...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Internet Mathematics

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2009